Алтайский государственный педагогический университет Институт физико-математического образования Кафедра технологических дисциплин

Инструкция по эксплуатации

«Станок школьный универсальный с числовым программным управлением»

Барнаул-2015

Содержание

Введение	3
1. Техническая характеристика станка:	3
2. Приводы станка	.4
3. Оснастки станка	.6
4. Разработка управляющей программы	7
GМ-коды	7
Использование программы Inkscape в качестве свободной CAD системы1	0
Подготовка управляющей программы в dlCAM1	2

Введение

На кафедре технологических дисциплин Института физикоматематичкого образования Алтайского государственного университета разработан универсальный школьный станок с числовым программным управлением.

Станок предназначен для изучения основ работы на станках оснащённых системой числового программного управления, а так же для получения изделий в рамках на занятиях по «технологии» в школе и педагогических ВУЗах.

Управление станком осуществляется от персонального компьютера под управлением операционных систем Linux или Windows. Управляющие программы для обработки деталей составляются с использованием стандартных функций программирования. по международному стандарту ISO.

Рис. 1. Общий вид станка: 1 – универсальная площадка для крепления оснастки, 2 – шаговый двигатель оси Х, 3 – шаговый двигатель оси Ү, 4 – драйвера шаговых двигателей, 5 – разъёмы драйверов для подключения к контроллеру, 6 – драйвер нагревательного элемента, 7 – разъём для управления ШД оснастки, 8 – направляющие осей, 9 – стол с Т-образными пазами, 10 – станина.

1. Техническая характеристика станка:

Напряжение питания,В	220
Потребляемая мощность, Вт	350
Предельные габариты заготовки	
(ширина х длина х высота),мм	300x300x20

Пределы частот вращения инструмента, мин ⁻¹	32 000
Диаметры применяемых инструментов, мм	3,2
Тип системы управления	CNC
Количество одновременно управляемых координат	3
Точность перемещений, мм	0,5
Подключаемый порт компьютера	USB

2. Приводы станка

Главное движение – вращение шпинделя гравировальной головки с режущим инструментом, осуществляется двигателем переменного тока, входящей в комплект поставки к станку мини-дрели МЭД-1 МФ.

Рис. 2. Комплект поставки мини-дрели МЭД-1 МФ

Данная мини-дрель относится к бытовым изделиям И имеет многофункциональное назначение, которое зависит от применяемой насадки. Дрель может использоваться для сверления, заточки, полировки, шлифовки, различных отрезания, фрезерования и гравировки материалов. Дрель предназначена для эксплуатации в районах умеренного климата, категория размещения 3.1 по ГОСТ 15150- 69, при температуре окружающего воздуха от -15°С до +35°С. В качестве рабочего инструмента используются специальные насадки, входящие в комплект поставки. Режим работы дрели повторнократковременный: 15 мин.- работа, 5 мин.- пауза.

Комплект поставки мини- дрели электрической МЭД-1 МФ:

1.1.Мини- дрель электрическая МЭД-1 МФ-1 шт.

1.2.Гибкий вал-1 шт.

1.3.Фиксатор шпинделя-1 шт.

- 1.4.Струбцина для установки штатива- 1 шт.
- 1.5.Штатив-1 шт.

1.6.Устройство световой подсветки- 1 шт.

1.7. Ограничитель глубины-1 шт.

1.8.Комплект цанг (Ø1,5 мм, Ø2,3 мм, Ø3 мм- 2шт.)- 4 шт.

1.9. Насадка со шлифовальная с алмазным напылением- 5 шт.

1.10.Насадка со шлифовальным камнем- 11 шт.

1.11.Насадка- барабан под круговую шлифовальную шкурку- 2 шт.

1.12.Круговая шлифовальная шкурка- 12 шт.

1.13.Шлифовальная шкурка Ø20 мм- 24 шт.

1.14.Отрезной круг Ø20 мм- 10 шт.

1.15.Полировальный круг- 4 шт.

1.16.Насадка для установки отрезных, полировальных кругов и шлиф. Шкурок-1 шт.

1.17.Насадка- резец- 1 шт.

1.18.Насадка- шарошка- 1 шт.

1.19.Насадка полировальная- 1 шт.

1.20.Насадка- щётка- 1 шт.

1.21.Насадка- кисточка- 1 шт.

1.22.Насадка для сверления отв. под саморез- 1 шт.

1.23.Набор свёрл- 1 шт.

1.24.Шлифовальный брусок- 1 шт.

1.25.Ключ-1 шт.

1.26. Адреса гарантийных мастерских.

1.27. Руководство по эксплуатации.

1.28.Индивидуальная упаковка.

Приводы подач

Рис. 3. Схема драйвера униполярного шагового двигателям

Рис. 4. Схема подключения станка

3. Оснастки станка

Универсальный школьный станок в базовом варианте имеет двухкоординатную систему числового управления. При этом, в зону обработки перемещается площадка с универсальным креплением. В зависимости от предложенной работы, к этой площадке может быть закреплена любая оснастка.

Оснастки могут быть следующие:

1. Универсальный подъёмник. Осуществляет подъём инструмента за счёт его

наклона. Тем самым осуществляется перемещение по оси Z. Подъёмник может использоваться для решения разных задач: гравировка, выжигание, рисование и т. д.

2. Рамка накаливания. Используется для резки изделий из пенопласта и экструдированного пенополистирола.

Виды работ осуществляемых с помощью оснасток:

- 1. Гравировка по древесине и древесным плитам.
- 2. Гравировка по стеклу.
- 3. Гравировка по пластику (подбор режимов резания).
- 4. Гравировка по металлу.
- 5. Выжигание по древесине (выжигатель и электронный блок, которым управляют с компьютера).
- 6. Резка пенопласта (электронный блок 5В 30А).
- 7. Рисование(функции плоттера). Плоттер- это устройство для автоматического вычерчивания с большой точностью рисунков, схем, сложных чертежей.

Станок укомплектован гравёром – мини-дрель, типа МЭД-1 МФ.

мини- дрель электрическая МЭД-1 МФ; драйвер для управления подъёмника.

4. Разработка управляющей программы

GМ-коды

Управляющая программа обработки детали состоит из последовательности кадров. Каждый отдельный кадр должен соответствовать формату (ГОСТ 20999-83. Устройства числового программного управления для металлообрабатывающего оборудования. Кодирование информации управляющих программ):

[слово ''Номер кадра''] < информационное слово > < информационное слово >

Номер кадра является необязательным и может быть опущен, тогда номер кадра определяется номером строки в тексте.

Слова состоят из буквенных адресов (см. табл. 1), математического знака "+" или "-" (при необходимости) и последовательности цифр.

Функции программирования			
	N	Порядковый номер кадра	
	G	Технологическая (подготовительная) команда задания режим операции (линейная, круговая интерполяция и т. д.)	
Z	Х, Ү,	Значение координат	
K	I, J,	Координаты центра окружности	
	F	Скорость подачи	
	S	Частота вращения шпинделя	
	Т	Выбор инструмента	
	М	Вспомогательная команда	
	R	Радиус дуги окружности	
	Р	Длительность паузы, номер подпрограммы, номер фиксированной точки, параметр команды	
	Q	Параметр команды	

Комментарии в тексте указываются в круглых скобках.

Пример кадра управляющей программы:

N100 S1000 M03 (Включение шпинделя с частотой оборотов 1000 об/мин.)

Таблица 2

Кодирование технологических функций (G - функции)

Код подготовитель ной функции	Наименован ие	Значение
G00	Быстрое позиционирование	Перемещение в запрограммированную точку с максимальной скоростью (например, с наибольшей скоростью подачи). Предварительно запрограммированная скорость перемещения игнорируется, но не отменяется. Перемещение по осям координат могут быть некоординированы.

G01	Линейная интерполяция	Вид управления, при котором обеспечивается постоянное отношение между скоростями по осям координат, пропорциональное отношению между расстояниями, на которые должен переместиться исполнительный орган станка по двум или более осям координат одновременно. При прямоугольной системе координат перемещение происходит по прямой линии.
-----	--------------------------	--

В русском языке есть термин САПР, который подразумевает CAD/CAM/CAE/PDM.

САЕ-системы- это разнообразные программные продукты, позволяющие при помощи расчётных методов (метод конечных элементов, метод конечных разностей, метод конечных объёмов) оценить, как поведёт себя компьютерная модель изделия в реальных условиях эксплуатации. Помогают убедиться в работоспособности изделия, без привлечения больших затрат времени и средств.

САМ (Computer-aided manufacturing)- автоматизированная система, либо модуль автоматизированной системы, предназначенный для подготовки управляющих программ для станков с ЧПУ, ориентированная на использование ЭВМ. Под термином понимаются как сам процесс компьютеризированной подготовки производства, так и программно-вычислительные комплексы, используемые инженерами-технологами.

Для подготовки технологической документации, в том числе и согласно с требованиями ЕСТД (единая система технологической документации), используются системы САРР:

- 2-х осевые лазерные станки,

- 3-х и 5-осевые фрезерные станки с ЧПУ;

- токарные станки,

- обрабатывающие центры (в том числе использующие шесть степеней свободы);

- автоматы продольного точения и токарно-фрезерной обработки;

- ювелирная и объёмная гравировка.

САD-системы (computer-aided design) — компьютерная поддержка проектирования, предназначенная для решения конструкторских задач и оформления конструкторской документации (более привычно они именуются системами автоматизированного проектирования — САПР).

Историю развития рынка CAD/CAM/CAE-систем можно достаточно условно разбить на три основных этапа, каждый из которых длился, примерно,

10

по 10 лет.

Современные системы автоматизации инженерных расчётов (или системы инженерного анализа) (САЕ) применяются совместно с САD-системами (зачастую интегрируются в них, в этом случае получаются гибридные CAD/CAE-системы).

САD системы, базирующиеся на трехмерной геометрии, сейчас широко применяются при проектировании широкого спектра изделий. В то же время, инженерный анализ с использованием САЕ-систем необходим при проектировании изделия. Поэтому ключевым моментом для улучшения процесса проектирования является тесная «бесшовная» интеграция САD и САЕ. Возможность тесной интеграции зависит от следующих факторов: масштаба, границ и целей САЕ-анализа; природы и качественных характеристик САD-модели; степени детализации, требуемой для САЕ.

Существуют четыре основных подхода к интеграции CAD и CAE:

- 1) САД- ориентированый;
- 2) САЕ- ориентированный;
- 3) САD/САЕ- ориентированный;
- 4) Использование технологии управления информацией об изделии на протяжении его жизненного цикла (Product Lifecycle Management, PLM).

Основными задачами САД/САМ/САЕ – систем являются:

- 1. Выполнение требований целостности проекта, то есть правильная передача основной концепции разрабатываемого изделия через все уровни проектирования.
- 2. Нахождение баланса между простотой проектирования и простотой производства изделия.

Решение указанных задач может быть достигнуто путём предварительного выбора таких характеристик объекта проектирования (ОП), которое обеспечили бы достижение поставленной цели с учётом особенностей реализации этапов проектирования и производства изделия, а также специфики применяемых комплексов программных и аппаратных средств.

Использование программы Inkscape в качестве свободной CAD системы

Inkscape - векторный графический редактор, удобен для создания как художественных, так и технических иллюстраций (вплоть до использования в качестве системы автоматизированного проектирования общего назначения (САПР), чему также способствует легкость обмена чертежами).

Интерфейс векторного графического редактора Inkscape состоит из

управляющих элементов и функций, призванных сделать работу художника простой и удобной. Интерфейс векторного графического редактора **Inkscape** состоит главным образом из рабочего окна, в котором можно создавать и управлять чертежам. В окне расположены управляющие и информационные инструменты, работа с которыми описана на этой странице.

Окно интерфейса Inkscape можно разделить на девять основных областей:

Рис. 5. Интерфейс программы Inkscape

- 1. Главное меню (Главное меню в верхней части окна)
- 2. Панель инструментов
- 2. Контекстная панель управления
- 3. Разметка, линейки, направляющие и сетки
- 4. Панель элементов управления
- 5. Окно инструментов
- 6. Холст
- 7. Палитра

8. Строка состояния.

Подготовка управляющей программы в dlCAM

Управляющая программа для станка может быть получена в среде dlCAM – Цифровая лаборатория (производство). Для этого необходимо импортировать рисунок, полученный в программе Inkscape, формата svg (меню: Файл – > Импорт svg...). В левом окне программы (рис.) отображаются элементы рисунка – пути (paths), которые представляют собой полилинию из прямых сегментов либо кривых Безье.

Рис. 6. Интерфейс программы dlCAM с загруженным изображением.

Здесь необходимо отметить галочкой пути, которые будут обработаны инструментом на станке. По умолчанию выделяются все пути. Далее необходимо перейти к следующей вкладке окна (рис).

☆ ★	GM			
Параметры				
F 10,00	*	s 200	•	
Z under		Z in		
20,00	*	-20,00	* *	
Fz 10,00	*			
Линия Заливка сжатием Создать GM код				

Рис. 7. Параметры обработки путей.

Здесь настраивается подача инструмента – F (мм/с), частота оборотов шпинделя инструмента – S (об/мин в случае если в качестве инструмента выбран выжигатель или струна для резки пенопласта, то S показывает мощность нагревателя в интервале от 0-минимум до 254 - максимум). Z under и Z in – интервал поднятия инструмента над поверхностью. Fz – скорость по оси Z.

Далее представлены способы обработки путей это: «Линия» и «Заливка сжатием». Обработка «Линия» осуществляет проход инструмента по контуру. В случае, если необходимо произвести обработку внутри контура (обработка кармана), то программа предусматривает такой вариант. Для этого необходимо выбрать пункт «Заливка сжатием». В настройках заливки параметр «Шаг» указывается в миллиметрах и характеризует разряжённость уменьшенных копий контура (рис.).

Заливка ожатием	\sim \sim 1	
Шаг 2,00 🛓		
Создать GM код		

Рис. 8. Заливка сжатием.

Теперь, при нажатии кнопки «Создать GM код», переходим к последней вкладке, где отображается текст управляющей программы (рис.).

13

Рис. 9. GM-коды управляющей программы и их отражение.

Справа окно отображает пути, совершаемые инструментов в соответствии с управляющей программой. Здесь жёлтыми линиями отображается быстрый ход инструмента (команда G00) над поверхностью заготовки.

Затем из главного окна «ЧПУ» –> «Запуск» можно осуществить передачу управляющей программы на универсальный станок с ЧПУ.